Journal of environmental management | 2021

Evaluating the resilience of water resources management scenarios using the evidential reasoning approach: The Zarrinehrud river basin experience.

 
 

Abstract


This paper introduces a new methodology for quantifying the total resilience of water resources management scenarios. The climate change impacts on water supply and demand have been investigated using a calibrated soil and water assessment tool (SWAT) and a MODSIM water allocation model. Several criteria have been defined to measure five aspects of water resources systems resilience. The first aspect defines resilience as system strength against crossing a performance threshold (reliability). In the second aspect, if the system crosses the performance threshold, the recovery rate of the system after a disturbance is evaluated. The violation from the performance threshold has been measured as the third aspect (vulnerability), which considers the failure s severity. The fourth aspect is the resilience under extreme events with unknown occurrence probability, which includes four sub-criteria, namely rapidity, robustness, resourcefulness, and redundancy (4\xa0R). Finally, the fifth criterion considers the ecological condition of the system (ecological index). To compare water resources management scenarios (alternatives), an analytical evidential reasoning-based (ER) approach has been used. To show the applicability of the proposed methodology, it has been applied to the Zarrinehrud river basin, which is the leading water supplier of Lake Urmia in Iran. As one of the largest saline lakes globally, this lake has been suffering from drastic desertification and salinization in the past two decades. The grade-based results of the performance criteria are synthesized into a grade-based total resilience criterion to facilitate the comparison of water resources management scenarios. It is shown that a scenario which results in 40% reduction in agricultural water demand until 2023 has the highest resilience and an acceptable construction and operational cost.

Volume 284
Pages \n 112025\n
DOI 10.1016/j.jenvman.2021.112025
Language English
Journal Journal of environmental management

Full Text