Journal of environmental management | 2021

Organic substitutions aggravated microbial nitrogen limitation and decreased nitrogen-cycling gene abundances in a three-year greenhouse vegetable field.

 
 
 
 
 
 
 

Abstract


Partially substituting chemical fertilizer with organic fertilizer has substantially changed the stoichiometric imbalances of carbon (C), nitrogen (N) and phosphorus (P) between microbial communities and their available resources in agroecosystems. However, how organic substitution alters microbial nutrient limitation and then affects soil N cycle in intensive greenhouse vegetable ecosystem, remain unknown. Thus, we performed a three-year greenhouse vegetable field experiment in China with different fertilization strategies: no N fertilization, chemical N fertilization, and substituting 20% (1M4N) or 50% (1M1N) of chemical N with organic fertilizer (organic substitutions). Our results demonstrated that the microbial communities presented N limitation, accompanying with a strong N:P but a weak C:N (or P) microbial homeostasis in response to high N:P imbalance among all treatments. Organic substitutions at 1M1N and 1M4N significantly aggravated microbial N limitation and decreased the gene abundances of nitrification and denitrification by 4.7%-27.3% than that of chemical N fertilization. Microbial N limitation was strongly influenced by N:P stoichiometric imbalance illustrated from regression analysis. The N-cycling gene abundances were not only dependent on the inorganic N pool and soil physicochemical properties (i.e. pH and electrical conductivity), but also affected by microbial nutrient limitation inferred from random forest analysis. Furthermore, the 1M1N treatment performed better than the 1M4N in terms of improved crop yield and less microbial N limitation. Overall, these results highlight the importance of ecological stoichiometry in regulating soil N cycle under different fertilization strategies for intensive greenhouse vegetable ecosystem.

Volume 288
Pages \n 112379\n
DOI 10.1016/j.jenvman.2021.112379
Language English
Journal Journal of environmental management

Full Text