Journal of environmental management | 2021

Controlling liquid hydrocarbon composition in valorization of plastic waste via tuning zeolite framework and SiO2/Al2O3 ratio.

 
 
 

Abstract


Abundance of plastic waste has become threat to the mankind and aquatic life and thus needs to be recycled or converted into value added products. Liquefaction of waste plastics via catalytic cracking is one the efficient routes towards plastic waste management. Concerning this, in present study, conversion of polymer mixture containing polypropylene, low-density polyethylene and high-density polyethylene (PP, LDPE and HDPE) was done for the production of gasoline and diesel range hydrocarbons using two-step cracking approach. MWW and MFI (12 and 10 member ring structures respectively) type zeolites having different pore structure and acidity were used for catalytic cracking of polymer feed at 350\xa0°C. Investigations revealed that MWW type zeolite having two independent pore channels selectively provides gasoline range of hydrocarbons (C7-C12, 99.12%) in polymer cracking reaction as compared to MFI type which results in C13-C20 range of hydrocarbons (73.19%). Hydrocarbon compositions were confirmed from GC-MS, 1H, 13C NMR and FT-IR techniques. In activity results it was observed that acidity of zeolites affects the liquid yield and hydrocarbon distribution as analysed by using zeolites of two different SiO2/Al2O3 (SAR) ratio (30 and 55) which directs that zeolite (MFI/MWW) with lower SAR (30) having higher acidity results in higher yield of fuel range liquid hydrocarbons as compared to higher SAR (55) zeolite. Characterization studies such as XRD, N2-physisorption, NH3-TPD, FE-SEM and EDX were performed to check the physiochemical properties of zeolite and correlated with the activity. Overall, the present investigation provides detailed comparative study on plastic degradation using MFI and MWW type zeolites resulting into different range of liquid hydrocarbons.

Volume 297
Pages \n 113288\n
DOI 10.1016/j.jenvman.2021.113288
Language English
Journal Journal of environmental management

Full Text