Journal of environmental management | 2021

Insight into the roles of electrolysis-activated persulfate oxidation in the waste activated sludge dewaterability: Effects and mechanism.

 
 
 
 
 
 
 
 

Abstract


Sludge dewatering, as one of the most important steps of sludge treatment, can facilitate transportation and improve disposal efficiency by reducing the volume of sludge. This study investigated the effects of electrolysis-activated persulfate oxidation on improving sludge dewaterability. The results indicated that the sludge capillary suction time (CST) and water content of dewatered sludge cake (Wc) reduced from 93.7\xa0s and 87.8% to 9.7\xa0s and 68.3% respectively at the optimized process parameters: electrolysis voltage of 40\xa0V, electrolysis time of 20\xa0min, and 1.2\xa0mmol/g TS S2O82-. Correlation analysis revealed that the enhancement of sludge dewaterability was closely associated with the increased floc size and zeta potential, decreased protein content in three-layers extracellular polymeric substances (EPS) and viscosity (R\xa0=\xa0-0.868, p\xa0=\xa00.002; R\xa0=\xa0-0.703, p\xa0=\xa00.035; R\xa0≥\xa00.961, p\xa0<\xa00.001; R\xa0=\xa00.949, p\xa0<\xa00.001). Four protein fluorescence regions in EPS were analyzed by three-dimensional excitation-emission matrix parallel factor (3D-EEM-PARAFAC). The protein secondary structure was changed after the treatment, and the reduction of α-helix/(β-sheet\xa0+\xa0random coil) indicated that more hydrophobic sites were exposed. Analysis by X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR) and rheological test demonstrated that the hydrophilic functional groups of the sludge were decreased and the sludge mobility was significantly enhanced after the treatment with electrolysis-activated persulfate oxidation. Moreover, bound water was converted to free water during SO4·- and ·OH generated by electrolysis-activated persulfate degraded EPS and attacked sludge cells. Meanwhile, scanning electron microscopy (SEM) images revealed that the treated sludge formed porous channel structures, which promoted the flowability of the water. These findings provide a new insight based on electrolysis-activated persulfate oxidation in sludge treatment for enhancing sludge dewaterability.

Volume 297
Pages \n 113342\n
DOI 10.1016/j.jenvman.2021.113342
Language English
Journal Journal of environmental management

Full Text