Journal of ethnopharmacology | 2021

Exploring four South African Croton species for potential anti-inflammatory properties: In vitro activity and toxicity risk assessment.

 
 
 
 
 
 
 
 

Abstract


ETHNOPHARMACOLOGICAL RELEVANCE\nThe African Continent harbours approximately 26 Croton species. Many Croton species are used in traditional medicine in southern Africa to treat a variety of ailments including malaria, tuberculosis, microbial infection and inflammation. Considering the high diversity of the genus Croton, the ethnopharmacological information available on southern African species is rather limited. Furthermore, the potential for novel anti-inflammatory drug scaffolds has not previously been investigated.\n\n\nAIM OF THE STUDY\nThe aim of the study was to evaluate the potential of four South African Croton species extracts (Croton gratissimus, Croton pseudopulchellus, Croton sylvaticus, and Croton steenkampianus) for anti-inflammatory activity targeting the TLR4 signalling pathway and to assess the potential risk for hepatotoxicity and genotoxicity using an in vitro cellomics approach.\n\n\nMATERIAL AND METHODS\nLeaf extracts of C. gratissimus, C. pseudopulchellus, C. sylvaticus and C. steenkampianus were prepared using methanol and chloroform (1:1, v/v). The anti-inflammatory activity was determined using LPS induced nitric oxide production in RAW 264.7 macrophages, while the hepatotoxicity and genotoxicity was evaluated using multi-parameter end point analysis in C3A and Vero cells, respectively. Mitochondrial membrane potential, mitochondrial mass, oxidative stress, lysosomal content and lipid accumulation were used as markers to assess the risk for hepatotoxicity.\n\n\nRESULTS\nAll four species attenuated nitric oxide production with negligible cytotoxicity. However, C. gratissimus yielded the most favorable profile. Cell density was significantly reduced in both C3A and Vero cells with the C. gratissimus extract providing a suitable toxicity profile amenable to further high content analysis. While there was no meaningful effect on mitochondrial dynamics, a strong dose dependent increase in lipid content, paralleled by an expansion of the lysosomal compartment, identifies a potential risk for steatosis. Risk for genotoxicity was investigated using the micronucleus assay which revealed a dose dependent increase in micronuclei formation. Changes in nuclear morphology and cell ploidy further strengthens the associated risk for genotoxicity and suggests the extract from C. gratissimus may function as an aneugen. Collectively, the data demonstrates that although the selected species possess anti-inflammatory components, the risk for possible hepatotoxic and genotoxic side effects may negate their prospect towards further drug development.

Volume None
Pages \n 114596\n
DOI 10.1016/j.jep.2021.114596
Language English
Journal Journal of ethnopharmacology

Full Text