Journal of hazardous materials | 2019

One-pot synthesis of layered mesoporous ZSM-5 plus Cu ion-exchange: Enhanced NH3-SCR performance on Cu-ZSM-5 with hierarchical pore structures.

 
 
 
 
 
 
 
 
 
 

Abstract


Hierarchical ZSM-5 zeolite with meso- and micro-pore structures was successfully prepared through a facile one-pot hydrothermal synthesis method using bifunctional template. After copper ion-exchange, it was applied for the selective catalytic reduction of NO with NH3 (NH3-SCR). Compared with conventional Cu-ZSM-5 catalyst containing only micropores, the hierarchical catalyst with ca. 2\u2009wt.% Cu loading displayed significantly improved catalytic performance. Particularly, the hierarchical zeolite catalyst also displayed excellent hydrothermal stability and sulfur resistance that exhibited great potential in practical application. Characterization techniques such as XRD, N2 physisorption, temperature programmed desorption/reduction (TPD/TPR) and in situ diffuse reflectance infrared Fourier transform spectroscopy (in situ DRIFTS) were comprehensively used to reveal the relationship between zeolite structure and catalytic properties. It was concluded that the hierarchically porous structure could not only improve the mass transfer of reactant/product but also provide larger specific surface area, higher surface acidity, larger NO adsorption capacity. And we found that bidentate nitrate species was more active in Cu-ZSM-5-meso than Cu-ZSM-5-C, which were all beneficial to the NH3-SCR reaction. This work can provide a guideline to design other high performance hierarchical zeolites with different crystalline structures (such as CHA, LTA) for efficient catalytic NOx removal processes.

Volume None
Pages \n 121593\n
DOI 10.1016/j.jhazmat.2019.121593
Language English
Journal Journal of hazardous materials

Full Text