Journal of hazardous materials | 2019

Utilization of Ag nanoparticles anchored in covalent organic frameworks for mercury removal from acidic waste water.

 
 
 
 
 
 
 

Abstract


Metal nanoparticles (NPs) have high reaction rate and atom utilization with respect to pollutants in aqueous environments. However, the aggregation and instability in acidic solution limit their practical applications. Mercury removed from acidic solution are still a big problem. In this study, we used a tunable porous covalent organic framework (COF) material as a support for in situ growth of Ag NPs via a one-step solution infiltration method, to enhance the spatial dispersion of NPs and their stability in acidic solution, and for the first time studying the mercury adsorption performance. More importantly, the Ag NPs@COF composite exhibited high removal rate (99 %), ultrahigh Ag atom utilization (150 %), high selectivity and stability, and reusability for Hg(II) removal from acidic aqueous solutions. Meantime, through common characterizations and density functional theory calculations verifying the microscopic adsorption process, we found COF material played an important role in the entire purification process because it provided some electrons to Hg(II) ions via Ag NPs, finally generating an amalgam. Therefore, the present work not only provides a COF-supported Ag NPs material for Hg(II) ions removal from acidic waste water but also opens a new field of design of functionalized COFs material for applications in environmental pollutions control.

Volume None
Pages \n 121824\n
DOI 10.1016/j.jhazmat.2019.121824
Language English
Journal Journal of hazardous materials

Full Text