Journal of hazardous materials | 2021

Studying the adsorption mechanisms of nanoplastics on covalent organic frameworks via molecular dynamics simulations.

 
 
 
 
 
 
 
 
 

Abstract


Covalent organic frameworks (COFs) with well-defined supramolecular structures and high surface-area-to-volume ratio have received extensive attention on their adsorption of contaminants from micro- to nano-size. Here, we studied the adsorption mechanisms of three typical nanoplastics (NP), including polyethylene (PE), nylon-6 (PA 6), and polyethylene terephthalate (PET) on chemically stable COFs (TpPa-X, X\xa0=\xa0H, CH3, OH, NO2 and F) by molecular dynamics simulations. Depending on molecular structure and surface composition, two distinct interactions-electrostatic interaction and van der Waals (vdW) interaction-are identified to be responsible for the adsorption of different NP pollutants on TpPa-X. The vdW interaction is dominant during the adsorption process, while polar groups in polymers and COFs can enhance the adsorption because of the electrostatic interaction. Compared with other functional COFs, we found that TpPa-OH shows the strongest adsorption with the NP pollutants employed in this study. This work reveals the COF-polymer adsorption behavior and properties at atomic scale, which is crucial to the development of promising COF materials to deal with NP pollution.

Volume 421
Pages \n 126796\n
DOI 10.1016/j.jhazmat.2021.126796
Language English
Journal Journal of hazardous materials

Full Text