Journal of hazardous materials | 2021

Environmental decomposition and remodeled phytotoxicity of framework-based nanomaterials.

 
 
 
 
 
 

Abstract


Zeolitic imidazole frameworks (ZIFs) have attracted a considerable amount of attention for use in environmental applications (e.g., pollutant adsorption and photocatalysis in water treatments). The environmental stability and toxicity of ZIFs are key prerequisites for their practical applications, but information about these factors is largely lacking. The present work finds that pristine ZIFs (ZIF-8 and ZIF-67) photodegrade from frame structures into two-dimensional nanosheets and are oxidized to zinc carbonate (ZIF-8) and Co3O4 (ZIF-67) under visible-light irradiation. The photoinduced electrons, holes and free radicals promote dissolution of the metal cores and organic ligands, leading to collapse of the frame structure. The photodegradation of ZIF-8 alleviates developmental inhibition, oxidative stress, plasmolysis, and photosynthetic toxicity, while the photodegradation of ZIF-67 aggravates nanotoxicity. The integration of metabolomics and transcriptomics analysis reveals that unsaturated fatty acid biosynthesis and metal ion-binding transcription contribute to the altered toxicity of ZIF photodegradation. These findings highlight the roles of photodegradation in structural transformation and alteration of the toxicity of ZIFs, alarming the study of pristine metal-organic frameworks (MOFs).

Volume 422
Pages \n 126846\n
DOI 10.1016/j.jhazmat.2021.126846
Language English
Journal Journal of hazardous materials

Full Text