Journal of sport and health science | 2021

Systematic reduction of leg muscle activity throughout a standard assessment of running footwear.

 
 
 
 

Abstract


PURPOSE\nTo investigate whether there is a systematic change of leg muscle activity, as quantified by surface electromyography (EMG), throughout a standard running footwear assessment protocol at a predetermined running speed.\n\n\nMETHODS\nThirty-one physically active adults (15 females, 16 males) completed 5 testing rounds consisting of overground running trials at a speed of 3.5 m/s. The level of muscle activity from 6 major leg muscles was recorded using surface EMG. The variables assessed were the EMG total intensity as a function of time and the cumulative EMG overall intensity (OI). Systematic effects of the chronological testing round (independent variable) on the normalized EMG OIs (dependent variable) were examined using Friedman ANOVAs and post hoc pairwise Wilcoxon signed-rank tests (α\u202f=\u202f0.05).\n\n\nRESULTS\nThere was a systematic reduction in overall EMG intensity for all 6 muscles over the time course of the running protocol (p < 0.001) until the fourth testing round when EMG intensities reached a steady state. The 1 exception was the biceps femoris muscle, which showed a significant reduction of EMG intensity during the stance phase (p < 0.001) but not the swing phase (p\u202f=\u202f0.16).\n\n\nCONCLUSION\nWhile running at a predetermined speed, the neuromuscular system undergoes an adaptation process characterized by a progressive reduction in the activity level of major leg muscles. This process may represent an optimization strategy of the neuromuscular system towards a more energetically efficient running style. Future running protocols should include a familiarization period of at least 7 min or 600 strides of running at the predetermined speed.

Volume None
Pages None
DOI 10.1016/j.jshs.2021.01.003
Language English
Journal Journal of sport and health science

Full Text