Journal of thermal biology | 2019

Interactions between thermoregulatory behavior and physiological acclimatization in a wild lizard population.

 
 
 
 
 
 
 

Abstract


Although the importance of thermoregulation and plasticity as compensatory mechanisms for climate change has long been recognized, they have largely been studied independently. Thus, we know comparatively little about how they interact to shape physiological variation in natural populations. Here, we test the hypothesis that behavioral thermoregulation and thermal acclimatization interact to shape physiological phenotypes in a natural population of the diurnal lizard, Sceloporus torquatus. Every month for one year we examined thermoregulatory effectiveness and changes in the population mean in three physiological parameters: cold tolerance (Ctmin), heat tolerance (Ctmax), and the preferred body temperature (Tpref), to indirectly assess thermal acclimatization in population means. We discovered that S. torquatus is an active thermoregulator throughout the year, with body temperature varying little despite strong seasonal temperature shifts. Although we did not observe a strong signal of acclimatization in Ctmax, we did find that Ctmin shifts in parallel with nighttime temperatures throughout the year. This likely occurs, at least in part, because thermoregulation is substantially less effective at buffering organisms from selection on lower physiological limits than upper physiological limits. Active thermoregulation is effective at limiting exposure to extreme temperatures during the day, but is less effective at night, potentially contributing to greater plasticity in Ctmin than Ctmax. Importantly, however, Tpref tracked seasonal changes in temperature, which is one the factors contributing to highly effective thermoregulation throughout the year. Thus, behavior and physiological plasticity do not always operate independently, which could impact how organisms can respond to rising temperatures.

Volume 79
Pages \n 135-143\n
DOI 10.1016/j.jtherbio.2018.12.001
Language English
Journal Journal of thermal biology

Full Text