Life sciences | 2019

MiR-424 overexpression protects alveolar epithelial cells from LPS-induced apoptosis and inflammation by targeting FGF2 via the NF-κB pathway.

 
 
 
 
 

Abstract


Acute respiratory distress syndrome (ARDS) is a multifactorial, inflammatory lung injury disease with high morbidity and mortality. However, the underlying pathogenic mechanism remains unknown. In this study, lipopolysaccharide (LPS)-stimulated alveolar epithelial cells were used to mimic the inflammatory pathogenesis of ARDS in vitro. We here investigated the role of miR-424 in LPS-stimulated alveolar epithelial cells and found it to be substantially downregulated. Overexpression of miR-424 inhibited apoptosis and inflammation in LPS-stimulated alveolar epithelial cells, and the miR-424 inhibitor exhibited the opposite effect. A bioinformatic analysis revealed a potential binding site of miR-424 in the 3 -UTR of fibroblast growth factor 2 (FGF2). A luciferase reporter assay suggested that miR-424 targeted FGF2 in alveolar epithelial cells. The level of FGF2 protein was inhibited by miR-424 mimic, whereas was significantly upregulated after miR-424 suppression in LPS-stimulated alveolar epithelial cells. MiR-424 also exhibited the protective role in LPS-induced apoptosis and inflammation by directly targeting FGF2 via the NF-κB pathway. In conclusion, our results demonstrate that miR-424 had a protective role in LPS-induced apoptosis and inflammation of alveolar epithelial cells by targeting FGF2 via regulating NF-κB pathway. This might contribute novel evidence to help identify a therapeutic target for treating ARDS.

Volume None
Pages \n 117213\n
DOI 10.1016/j.lfs.2019.117213
Language English
Journal Life sciences

Full Text