Materials Today: Proceedings | 2019

Femtosecond Laser Ablation Synthesis of Nanoparticles and Nano-Hybrides in Ethanol Medium

 
 
 
 
 

Abstract


Abstract The nanoparticle production has a significant importance because of its unique optical properties in molecular biology and medicine. Plasmonic metallic nanoparticles are widely used in cancer monitoring studies as contrast agents on the account of their surface plasmon resonance (SPR) effect. Beside, silicon (Si) semiconductor nanoparticles can provide several beneficial properties that they are used commonly intensifying the detecting signals. Nanoalloys/Nanohybides/Nanocomposites are more functional materials than a single material structure and having many restrictions. At that point, the application of Pulsed Laser Ablation (PLA) technique has many advantages if applied in the liquid. Since no any chemical technique is applied, this procedure promises a clean synthesis process; it is a simple and economical technique in the production process. It provides some possibilities to generate particles in the desired size, shape and density, and these properties of nanoparticles produced can be controlled by controlling the laser parameters. In this work, we have focused on the production of nanoparticles to rid off chemical processes using femtosecond laser ablation technique, and this technique presents a process to reach the fast and reliable results for production of nanoshells, nanocomposites and all nanoforms of particles. We have produced Si@Au nanohybrids in ethanol medium using femtosecond laser ablation depending on laser pulse energy. Absorption spectra were recorded day by day to determine the optical characteristics of produced nanoparticles within these time durations, Transmission Electron Microscopy (TEM) images were obtained for monitoring and determining the size/structure of nanoparticles, energy dispersive spectroscopy (EDS) for material compositions were produced, these results obtained are presented in the scope of this paper

Volume 18
Pages 1803-1810
DOI 10.1016/j.matpr.2019.06.667
Language English
Journal Materials Today: Proceedings

Full Text