Materials Today. Proceedings | 2021

Weighted butterfly optimization algorithm with intuitionistic fuzzy gaussian function based adaptive-neuro fuzzy inference system for covid-19 prediction

 
 

Abstract


\n Covid-19 cases are increasing each day, however none of the countries successfully came up with a proper approved vaccine. Studies suggest that the virus enters the body causing a respiratory infection post contact with a disease. Measures like screening and early diagnosis contribute towards the management of COVID- 19 thereby reducing the load of health care systems. Recent studies have provided promising methods that will be applicable for the current pandemic situation. The previous system designed a various Machine Learning (ML) algorithms such as Decision Tree (DT), Random Forest (RF), XGBoost, Gradient Boosting Machine (GBM) and Support Vector Machine (SVM) for predicting COVID-19 disease with symptoms. However, it does not produce satisfactory results in terms of true positive rate. And also, better optimization methods are required to enhance the precision rate with minimum execution time. To solve this problem the proposed system designed a Weighted Butterfly Optimization Algorithm (WBOA) with Intuitionistic fuzzy Gaussian function based Adaptive-Neuro Fuzzy Inference System (IFGF-ANFIS) classifier for predicting the magnitude of COVID- 19 disease. The principle aim of this method is to design an algorithm that could predict and assess the COVID-19 parameters. Initially, the dataset regarding COVID-19 is taken as an input and preprocessed. The parameters included are age, sex, history of fever, travel history, presence of cough and lung infection. Then the optimal features are selected by using Weighted Butterfly Optimization Algorithm (WBOA) to improve the classification accuracy. Based on the selected features, an Intuitionistic fuzzy Gaussian function based Adaptive-Neuro Fuzzy Inference System (IFGF-ANFIS) classifier is utilized for classifying the people having infection possibility. The studies conducted on this proposed system indicates that it is capable of producing better results than the other systems especially in terms of accuracy, precision, recall and f-measure.\n

Volume None
Pages None
DOI 10.1016/j.matpr.2021.10.153
Language English
Journal Materials Today. Proceedings

Full Text