Medical engineering & physics | 2021

A Poly-vinyl Alcohol (PVA)-based phantom and training tool for use in simulated Transrectal Ultrasound (TRUS) guided prostate needle biopsy procedures.

 
 
 
 
 
 
 

Abstract


Trans-rectal ultrasound-guided needle biopsy is a well-established diagnosis technique for prostate cancer. To enhance the needle manoeuvring skills under ultrasound (US) guidance, it is preferable to train medical practitioners in needle biopsy on tissue-mimicking phantoms. This phantom should mimic the morphology as well as mechanical and acoustic properties of the human male pelvic region to provide a surgical experience and feedback. In this study, polyvinyl alcohol (PVA) was used and evaluated for prostate phantom development, that is stiffness tunable, US-compatible and durable phantom material. Three samples, each with 5%, 10%, and 15% concentration of PVA material, were prepared, and their mechanical and shrinkage characteristics were investigated. The anatomy of male pelvic region was used to develop an anatomically correct phantom. Later US-guided needle biopsy was performed on the phantom. The range of elastic moduli of the PVA samples was 2∼146 kPa. Their elastic moduli and volumes were found to remain statistically close from seventh to eighth freeze-thaw cycle (p>0.05). Initial US scans of the phantom resulted in satisfactory B-mode images, with a clear distinction between the prostate and its surrounding organs. This study demonstrated the applicability of PVA hydrogel as a phantom material for training in US-guided needle biopsy.

Volume 96
Pages \n 46-52\n
DOI 10.1016/j.medengphy.2021.08.008
Language English
Journal Medical engineering & physics

Full Text