Medical image analysis | 2021

Modeling dynamic characteristics of brain functional connectivity networks using resting-state functional MRI

 
 
 
 

Abstract


Dynamic network analysis using resting-state functional magnetic resonance imaging (rs-fMRI) provides a great insight into fundamentally dynamic characteristics of human brains, thus providing an efficient solution to automated brain disease identification. Previous studies usually pay less attention to evolution of global network structures over time in each brain s rs-fMRI time series, and also treat network-based feature extraction and classifier training as two separate tasks. To address these issues, we propose a temporal dynamics learning (TDL) method for network-based brain disease identification using rs-fMRI time-series data, through which network feature extraction and classifier training are integrated into the unified framework. Specifically, we first partition rs-fMRI time series into a sequence of segments using overlapping sliding windows, and then construct longitudinally ordered functional connectivity networks. To model the global temporal evolution patterns of these successive networks, we introduce a group-fused Lasso regularizer in our TDL framework, while the specific network architecture is induced by an ℓ1-norm regularizer. Besides, we develop an efficient optimization algorithm to solve the proposed objective function via the Alternating Direction Method of Multipliers (ADMM). Compared with previous studies, the proposed TDL model can not only explicitly model the evolving connectivity patterns of global networks over time, but also capture unique characteristics of each network defined at each segment. We evaluate our TDL on three real autism spectrum disorder (ASD) datasets with rs-fMRI data, achieving superior results in ASD identification compared with several state-of-the-art methods.

Volume 71
Pages \n 102063\n
DOI 10.1016/j.media.2021.102063
Language English
Journal Medical image analysis

Full Text