Microbes and infection | 2021

Potential genes associated with survival of Acinetobacter baumannii under ciprofloxacin stress.

 
 
 

Abstract


Acinetobacter baumannii is an opportunistic pathogen that has acquired resistance to all available drugs. The rise in multi-drug resistance in A. baumannii has been exacerbated by its ability to tolerate antibiotics due to the persister cells, which are phenotypic variants of normal cells that can survive various stress conditions, resulting in chronicity of infection. In the present study we observed that A. baumannii formed persister cells against lethal concentration of ciprofloxacin in exponential phase. The transcriptome of A. baumannii was analyzed after exposure to high concentration of ciprofloxacin (50X MIC) to determine the possible mechanisms of survival. Transcriptome analysis showed differential expression of 146 genes, of which 101 were up-regulated and 45 were down-regulated under ciprofloxacin stress. Differentially expressed genes that might be important for persistence against ciprofloxacin were involved in DNA repair, phenylacetic acid degradation, leucine catabolism, HicAB toxin-antitoxin system and ROS response (iron-sulfur clusters, hemerythrin-like metal binding and Kdp). recA, umuD and ddrR genes involved in SOS response were also up-regulated. Knockout of umuD showed significant decrease in persister cells formation while they were completely eradicated in recA mutant strain. The differentially expressed genes highlighted in the study merit further investigation as therapeutic targets for effective control of A. baumannii infections.

Volume None
Pages \n 104844\n
DOI 10.1016/j.micinf.2021.104844
Language English
Journal Microbes and infection

Full Text