Microbial pathogenesis | 2019

In vitro and in silico approaches of antibiofilm activity of 1-hydroxy-1-norresistomycin against human clinical pathogens.

 
 
 

Abstract


In the present study, an attempt has been made to explore the antibiofilm activity of bioactive compound 1-hydroxy-1-norresistomycin (HNM) derived from coral mucus associated actinomycete Streptomyces variabilis. Initially, different concentration of HNM inhibited the biofilm formation of human clinical pathogens Escherichia coli, Vibrio cholerae and Staphylococcus aureus was determined using crystal-violet staining assay. The light microscopic analysis showed that HNM reduced the biofilm formation and adherence of bacterial cells on the surface of coverslip. HNM also damages the 3D architecture with reduced thickness as well as cell aggregation of biofilm forming bacteria analysed by confocal laser scanning microscopy (CLSM). In addition, HNM also demonstrated the efficiency in inhibiting theoretical adhesion by altering the surface hydrophobicity that can potentially hamper cellular adhesion and prevent biofilm formation. Furthermore, the molecular docking showed the significant interaction between HNM and key biofilm forming proteins proved an excellent antibiofilm activity of HNM. Together, these results suggest that the HNM can serve as potential antibiofilm agent in controlling the infections of E. coli, V. cholerae and S. aureus.

Volume 132
Pages \n 343-354\n
DOI 10.1016/j.micpath.2019.05.021
Language English
Journal Microbial pathogenesis

Full Text