Materials science & engineering. C, Materials for biological applications | 2021

Efficient fabrication of stretching hydrogels with programmable strain gradients as cell sheet delivery vehicles.

 
 
 
 
 
 
 
 

Abstract


Fabricating functional cell sheets with excellent mechanical strength for tissue regeneration remains challenging. Therefore, we devised a novel 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide/N-hydroxy-succinimide crosslinked hydrogel carrier composed of gelatin (Ge) and beta-cyclodextrin (β-CD) that promoted the adhesion and proliferation of keratinocytes (Kcs) compared with those cultured on a Ge hydrogel due to significantly higher pore size, porosity, and stiffness, as confirmed using field emission scanning electron microscopy (FE-SEM) and shear wave elastography (SWE). Upon exposure to a programmable gradient microenvironment, cells displayed a stress/strain-dependent spatial-temporal distribution of extended cellular phenotypes and cytoskeletons. The promoted proliferation of Kcs and the increased retention of the undifferentiated cell phenotype on Ge-β-CD composite hydrogels under a 15% strain led to the accelerated detachment of cell sheets with retained cell-cell junctions. Moreover, the stretch-triggered upregulated expression of phosphorylated yes-associated protein (YAP) 1 suggested that this effect might be associated with the mechanical stimulation-induced activation of the YAP pathway.

Volume 129
Pages \n 112415\n
DOI 10.1016/j.msec.2021.112415
Language English
Journal Materials science & engineering. C, Materials for biological applications

Full Text