Neurophysiologie Clinique | 2021

Behavioral-state development and sleep-state differentiation during early ontogenesis

 
 
 
 

Abstract


Sleep is a key process in neurodevelopment and essential for the maturation of fundamental brain functions. Premature birth can disturb the initial steps of sleep maturation, which may contribute to the impairment of neurodevelopment. It is thus fundamental to understand the maturation of the various sleep states and the quality of cerebral function in each vigilance state, as well as the development of sleep cyclicity, in at-risk neonatal infants, particularly those born premature. The objective of this review is to provide a precise description of sleep states and cycles and their rhythmic organization in premature and term newborns according to their gestational age. Technical aspects of polysomnography, which requires a high level of expertise in neonates, are also described. Principles of the visual interpretation of polysomnography, including the simultaneous analysis of behavioral (spontaneous motricity and eye movements), polysomnographic parameters (electro-oculogram, electrocardiogram, respiration), and electroencephalography patterns are presented. The neurophysiology of sleep ontogenesis and its interaction with brain maturation are discussed, highlighting the crucial role of sleep states and their duration in premature newborns. In particular, the involvement of myoclonic twitches in functional connectivity in sensorimotor development is discussed. Indeed, sleep quality, determined by combined polysomnographic parameters, reflects either normal or pathological developmental processes during the neonatal period. The fundamental place of neurophysiological explorations in the early detection of sleep disorders is discussed, as well as their potential consequences on neurodevelopmental care to improve the prevention of neurodevelopmental impairment.

Volume 51
Pages 89-98
DOI 10.1016/j.neucli.2020.10.003
Language English
Journal Neurophysiologie Clinique

Full Text