Neurochemistry International | 2021

Inhibition of nitric oxide production enhances the activity of facial nerve tubulin polymerization and the ability of tau to promote microtubule assembly after neurorrhaphy

 
 

Abstract


We previously reported that inhibition of nitric oxide (NO) production promotes rat reconnected facial nerve regeneration. However, the underlying mechanism is obscure. Microtubule assembly is known to be essential to axon regeneration; nevertheless, tubulins and microtubule-associated proteins (MAPs) have been demonstrated as targets for NO and peroxynitrite. Thus, we hypothesized that NO and/or peroxynitrite may affect facial nerve regeneration via influencing on microtubule assembly. First, tubulins and tau (a MAP) were extracted from facial nerves of normal rats, treated with NO donor or peroxynitrite, and processed for microtubule assembly assay. We found that peroxynitrite, DEA NONOate, and Angeli s salt reduced the tubulin polymerization activity to a greater extent than GSNO, SIN-1, and SNAP. Additionally, SIN-1, peroxynitrite, and Angeli s salt impaired the ability of tau to promote microtubule assembly. Next, nitrosative stress biomarkers 3-nitrotyrosine (3-NT) and S-nitrosylated cysteine (SNO-Cys) were immunolabeled in facial nerves. Both biomarkers were highly upregulated in proximal and distal stumps of reconnected facial nerves at 3 days and 1 week after neurorrhaphy. Notably, the expression of 3-NT was greatly reduced at 2 weeks, whereas that of SNO-Cys was maintained. Conversely, inhibition of NO production with L-NAME prevented the upregulation of SNO-Cys. Further, we used tubulins and tau extracted from facial nerves of sham-operated, nerve suture\xa0+\xa0vehicle treatment, and nerve suture\xa0+\xa0L-NAME treatment rats to perform microtubule assembly assay. We found that L-NAME treatment enhanced polymerization activity of tubulins and ability of tau to promote microtubule assembly. It is noteworthy that α-tubulin plays a more important role than β-tubulin since the activity of microtubule assembly using α-tubulin extracted from L-NAME-treated rats was greatly elevated, whereas that using β-tubulin extracted from L-NAME-treated rats was not. Overall, our findings support that inhibition of NO production reduces nitrosative stress, and may thus facilitate microtubule assembly and facial nerve regeneration.

Volume 150
Pages None
DOI 10.1016/j.neuint.2021.105183
Language English
Journal Neurochemistry International

Full Text