NeuroImage | 2021

Tracking dynamic adjustments to decision making and performance monitoring processes in conflict tasks

 
 
 
 
 
 

Abstract


How we exert control over our decision-making has been investigated using conflict tasks, which involve stimuli containing elements that are either congruent or incongruent. In these tasks, participants adapt their decision-making strategies following exposure to incongruent stimuli. According to conflict monitoring accounts, conflicting stimulus features are detected in medial frontal cortex, and the extent of experienced conflict scales with response time (RT) and frontal theta-band activity in the electroencephalogram (EEG). However, the consequent adjustments to decision processes following response conflict are not well-specified. To characterise these adjustments and their neural implementation we recorded EEG during a modified Flanker task. We traced the time-courses of performance monitoring processes (frontal theta) and multiple processes related to perceptual decision-making. In each trial participants judged which of two overlaid gratings forming a plaid stimulus (termed the S1 target) was of higher contrast. The stimulus was divided into two sections, which each contained higher contrast gratings in either congruent or incongruent directions. Shortly after responding to the S1 target, an additional S2 target was presented, which was always congruent. Our EEG results suggest enhanced sensory evidence representations in visual cortex and reduced evidence accumulation rates for S2 targets following incongruent S1 stimuli. Results of a follow-up behavioural experiment indicated that the accumulation of sensory evidence from the incongruent (i.e. distracting) stimulus element was adjusted following response conflict. Frontal theta amplitudes positively correlated with RT following S1 targets (in line with conflict monitoring accounts). Following S2 targets there was no such correlation, and theta amplitude profiles instead resembled decision evidence accumulation trajectories. Our findings provide novel insights into how cognitive control is implemented following exposure to conflicting information, which is critical for extending conflict monitoring accounts.

Volume 238
Pages None
DOI 10.1016/j.neuroimage.2021.118265
Language English
Journal NeuroImage

Full Text