Neuropharmacology | 2021

BK channel-forming slo1 proteins mediate the brain artery constriction evoked by the neurosteroid pregnenolone

 
 
 

Abstract


Pregnenolone is a neurosteroid that modulates glial growth and differentiation, neuronal firing, and several brain functions, these effects being attributed to pregnenolone actions on the neurons and glial cells themselves. Despite the vital role of the cerebral circulation for brain function and the fact that pregnenolone is a vasoactive agent, pregnenolone action on brain arteries remain unknown. Here, we obtained in vivo concentration response curves to pregnenolone on middle cerebral arteries (MCA) diameter in anesthetized male and female C57BL/6J mice. In both male and female animals, pregnenolone (1 nM-100 μM) constricted MCA in a concentration-dependent manner, its maximal effect reaching ∼22-35% decrease in diameter. Pregnenolone action was replicated in intact and de-endothelialized, in vitro pressurized MCA segments with pregnenolone evoking similar constriction in intact and de-endothelialized MCA. Neurosteroid action was abolished by 1 μM paxilline, a selective blocker of Ca2+ - and voltage-gated K+ channels of large conductance (BK). Cell-attached, patch-clamp recordings on freshly isolated smooth muscle cells from mouse MCAs demonstrated that pregnenolone at concentrations that constricted MCAs in vitro and in vivo (10 μM), reduced BK activity (NPo), with an average decrease in NPo reaching 24.2%. The concentration-dependence of pregnenolone constriction of brain arteries and inhibition of BK activity in intact cells were paralleled by data obtained in cell-free, inside-out patches, with maximal inhibition reached at 10 μM pregnenolone. MCA smooth muscle BKs include channel-forming α (slo1 proteins) and regulatory β1 subunits, encoded by KCNMA1 and KCNMB1, respectively. However, pregnenolone-driven decrease in NPo was still evident in MCA myocytes from KCNMB1-/- mice. Following reconstitution of slo1 channels into artificial, binary phospholipid bilayers, 10 μM pregnenolone evoked slo1 NPo inhibition which was similar to that seen in native membranes. Lastly, pregnenolone failed to constrict MCA from KCNMA1-/- mice. In conclusion, pregnenolone constricts MCA independently of neuronal, glial, endothelial and circulating factors, as well as of cell integrity, organelles, complex membrane cytoarchitecture, and the continuous presence of cytosolic signals. Rather, this action involves direct inhibition of SM BK channels, which does not require β1 subunits but is mediated through direct sensing of the neurosteroid by the channel-forming α subunit.

Volume 192
Pages None
DOI 10.1016/j.neuropharm.2021.108603
Language English
Journal Neuropharmacology

Full Text