Neuroscience | 2019

Loss of Lgl1 Disrupts the Radial Glial Fiber-guided Cortical Neuronal Migration and Causes Subcortical Band Heterotopia in Mice

 
 
 
 
 

Abstract


Radial glial cells (RGCs) are neuronal progenitors and function as scaffolds for neuronal radial migration in the developing cerebral cortex. These functions depend on a polarized radial glial scaffold, which is of fundamental importance for brain development. Lethal giant larvae 1 (Lgl1), a key regulator for cell polarity from Drosophila to mammals, plays a key role in tumorigenesis and brain development. To overcome neonatal lethality in Lgl1-null mice and clarify the role of Lgl1 in mouse cerebral cortex development and function, we created Lgl1 dorsal telencephalon-specific knockout mice mediated by Emx1-Cre. Lgl1Emx1 conditional knockout (CKO) mice had normal life spans and could be used for function research. Histology results revealed that the mutant mice displayed an ectopic cortical mass in the dorsolateral hemispheric region between the normotopic cortex and the subcortical white matter, resembling human subcortical band heterotopia (SBH). The Lgl1Emx1 CKO cortex showed disrupted adherens junctions (AJs), which were accompanied by ectopic RGCs and intermediate progenitors, and disorganization of the radial glial fiber system. The early- and late-born neurons failed to reach the destined position along the disrupted radial glial fiber scaffold and instead accumulated in ectopic positions and formed SBH. Additionally, the absence of Lgl1 led to severe abnormalities in RGCs, including hyperproliferation, impaired differentiation, and increased apoptosis. Lgl1Emx1 CKO mice also displayed deficiencies in anxiety-related behaviors. We concluded that Lgl1 is essential for RGC development and neural migration during cerebral cortex development.

Volume 400
Pages 132-145
DOI 10.1016/j.neuroscience.2018.12.039
Language English
Journal Neuroscience

Full Text