Neurobiology of Learning and Memory | 2021

Dorsomedial striatal contributions to different forms of risk/reward decision making

 
 
 
 
 

Abstract


Optimal decision making involving reward uncertainty is integral to adaptive goal-directed behavior. In some instances, these decisions are guided by internal representations of reward history, whereas in other situations, external cues inform a decision maker about how likely certain actions may yield reward. Different regions of the frontal lobe form distributed networks with striatal and amygdalar regions that facilitate different types of risk/reward decision making. The dorsal medial striatum (DMS) is one key output region of the prefrontal cortex, yet there have been few preclinical studies investigating the involvement of the DMS in different forms of risk/reward decision making. The present study addressed this issue, wherein separate groups of male rats were trained one of two tasks where they chose between a small/certain or a large/risky reward. In a probabilistic discounting task, reward probabilities changed systematically over blocks of trials (100-6.25% or 6.25-100%), requiring rats to use internal representations of reward history to guide choice. Cue-guided decision-making was assessed with a Blackjack task, where different auditory cues indicated the odds associated with the large/risky option (50 or 12.5%). Inactivation of the DMS with GABA agonists impaired adjustments in choice biases during probabilistic discounting, resulting in either increases or decreases in risky choice as the probabilities associated with the large/risky reward decreased or increased over a session. In comparison, DMS inactivation increased risky choices on poor-odds trials on the Blackjack task, which was associated in a reduced impact that non-rewarded choices had on subsequent choices. DMS inactivation also impaired performance of an auditory conditional discrimination. These findings highlight a previously uncharacterized role for the DMS in facilitating flexible action selection during multiple forms of risk/reward decision making.

Volume 178
Pages None
DOI 10.1016/j.nlm.2020.107369
Language English
Journal Neurobiology of Learning and Memory

Full Text