Neurotoxicology and teratology | 2019

Toxic stress history and hypothalamic-pituitary-adrenal axis function in a social stress task: Genetic and epigenetic factors.

 
 
 
 

Abstract


Histories of early life stress (ELS) or social discrimination can reach levels of severity characterized as toxic to mental and physical health. Such toxic social stress during development has been linked to altered acute hypothalamic-pituitary-adrenal (HPA) response to social stress in adulthood. However, there are important individual differences in the size and direction of these effects. We explored developmental, genetic, epigenetic, and contextual sources of individual differences in the relationship between ELS, discrimination, and adult responses to acute social stress in a standard laboratory test. Additional measures included perceived status, social support, background activity of HPA axis, and genetic variants in aspects of the stress response system. Participants (n\u202f=\u202f90) answered questions about historical and ongoing stress, provided a DNA sample to examine genetic polymorphisms and epigenetic marks, and underwent the Trier Social Stress Test (TSST) during which three saliva samples were collected to assess HPA function. Individuals who reported high levels of childhood adversity had a blunted salivary cortisol response to the TSST. Childhood adversity, discrimination experiences, and FKBP5 genotype were found to predict pretest cortisol levels. Following up on recent observations that the glucocorticoid receptor directly interacts with the mitochondrial genome, particularly the NADH dehydrogenase 6 (MT-ND6) gene, individuals who reported high childhood adversity were also found to have higher percent methylation across six CpG sites upstream of MT-ND6. These findings suggest multiple contributions across psychological, genetic, epigenetic, and social domains to vulnerability and resilience in hypothalamic-pituitary-adrenal axis regulation. Further study to examine how these multiple contributors affect developmental endpoints through integrated or independent pathways will be of use.

Volume 71
Pages \n 41-49\n
DOI 10.1016/j.ntt.2018.01.011
Language English
Journal Neurotoxicology and teratology

Full Text