Pattern recognition | 2021

Automated segmentation of the optic disc from fundus images using an asymmetric deep learning network

 
 
 
 
 
 
 

Abstract


Accurate segmentation of the optic disc (OD) regions from color fundus images is a critical procedure for computer-aided diagnosis of glaucoma. We present a novel deep learning network to automatically identify the OD regions. On the basis of the classical U-Net framework, we define a unique sub-network and a decoding convolutional block. The sub-network is used to preserve important textures and facilitate their detections, while the decoding block is used to improve the contrast of the regions-of-interest with their background. We integrate these two components into the classical U-Net framework to improve the accuracy and reliability of segmenting the OD regions depicted on color fundus images. We train and evaluate the developed network using three publicly available datasets (i.e., MESSIDOR, ORIGA, and REFUGE). The results on an independent testing set (n=1,970 images) show a segmentation performance with an average Dice similarity coefficient (DSC), intersection over union (IOU), and Matthew s correlation coefficient (MCC) of 0.9377, 0.8854, and 0.9383 when trained on the global field-of-view images, respectively, and 0.9735, 0.9494, and 0.9594 when trained on the local disc region images. When compared with the other three classical networks (i.e., the U-Net, M-Net, and Deeplabv3) on the same testing datasets, the developed network demonstrates a relatively higher performance.

Volume 112
Pages None
DOI 10.1016/j.patcog.2020.107810
Language English
Journal Pattern recognition

Full Text