Plant physiology and biochemistry : PPB | 2021

Comprehensive dissection of primary metabolites in response to diverse abiotic stress in barley at seedling stage.

 
 
 
 

Abstract


Plants will meet various abiotic stresses during their growth and development. One of the important strategies for plants to deal with the stress is involved in metabolic regulation, causing the dramatic changes of metabolite profiles. Metabolomic studies have been intensively conducted to reveal the responses of plants to abiotic stress, but most of them were limited to one or at most two abiotic stresses in a single experiment. In this study, we compared the metabolite profiles of barley seedlings exposed to seven abiotic stresses, including drought, salt stress, aluminum (Al), cadmium (Cd), deficiency of nitrogen (N), phosphorus (P) and potassium (K). The results showed that metabolite profiles of barley under these stresses could be classified into three groups: osmotic stresses (drought and salt); metal stresses (Al and Cd) and nutrient deficiencies (N, P and K deficiencies). Compared with the control, some metabolites (including polyamines, raffinose and pipecolic acid) in plants exposed to all abiotic stresses changed significantly, while some other metabolites showed the specific change only under a certain abiotic stress, such as proline being largely increased by osmotic stress (drought and salinity), the P-containing metabolites being largely decreased under P deficiency, some amino acids (lysine, tyrosine, threonine, ornithine, glutamine and so on) showing the dramatic reduction in the plants exposed to N deficiencies, respectively. The current meta-analysis obtained a comprehensive view on the metabolic responses to various abiotic stress, and improved the understanding of the mechanisms for tolerance of barley to abiotic stress.

Volume 161
Pages \n 54-64\n
DOI 10.1016/j.plaphy.2021.01.048
Language English
Journal Plant physiology and biochemistry : PPB

Full Text