Regenerative Therapy | 2021

Facial nerve regeneration with bioabsorbable collagen conduits filled with collagen filaments: An experimental study

 
 
 
 
 
 
 
 
 

Abstract


Introduction A bioabsorbable collagen conduit (Renerve™) filled with collagen filaments is currently approved as an artificial nerve conduit in Japan and is mainly used for connecting and repairing peripheral nerves after traumatic nerve injury. However, there are few reports on its applications for reconstructing and repairing the facial nerve. The present study evaluated the efficacy of the conduit on promoting nerve regeneration in a murine model with a nerve defect at the buccal branch of the facial nerve. Methods Under inhalational anesthesia and microscopic guidance, the buccal branch of the left facial nerve in an 8-week-old Lewis rat was exposed, and a 7 mm gap was created in the nerve. The gap was then connected with either the nerve conduits (NC group) or an autologous nerve graft (the autograft group). At 13 weeks after the procedure, we compared the histological and physiological regenerations in the both groups. Results We found compound muscle action potential amplitude is significantly larger in the autograft group (2.8 ± 1.4 mV) than in NC group (1.3 ± 0.5 mV) (p < 0.05). The number of myelinated fibers of the autograft group was higher (3634 ± 1645) than that of NC group (1112 ± 490) (p < 0.01). The fiber diameter of the autograft group (4.8 ± 1.9 μm) was larger than that of NC group (3.8 ± 1.4 μm) (p < 0.05). The myelin thickness of the autograft group was thicker than that of NC group (0.6 ± 0.3 μm vs. 0.4 ± 0.1 μm) (p < 0.05). G-ratio of the autograft group (0.74 ± 0.19) was lower than that of NC group (0.79 ± 0.10) (p < 0.05). Conclusion This study demonstrated the efficacy of collagen nerve conduit for facial nerve reconstruction following nerve injury. However, the effectiveness of the conduit on the promotion of nerve regeneration was inferior to that of the autograft.

Volume 18
Pages 302 - 308
DOI 10.1016/j.reth.2021.08.006
Language English
Journal Regenerative Therapy

Full Text