Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy | 2021

Investigating phosphorescence capability of halogen-substituted metal-free organic molecules: A theoretical study.

 
 
 
 
 
 
 
 
 

Abstract


The radiative and non-radiative decay processes of five compounds are investigated through a comprehensive computational approach, for the aim of investigating the effect of different halogen substituents to the phosphorescent emission. Their optimal configurations at the ground (S0) and lowest triplet excited (T1) states are obtained and the calculated phosphorescent emission spectra are comparable with the experimental values. For 1,4-di(9H-carbazol-9-yl)benzene (PDCz), the electronic transition is between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO), while for the four halides, the electronic transitions are attributed to several molecular orbitals. According to calculations, 9,9 -(2,5-diiodo-1,4-phenylene)bis(9H-carbazole) (PDICz) possesses the largest radiative decay rate constant (kr) and non-radiative decay rate constant (knr), which can be attributed to the strong spin-orbital coupling from the heavy iodine atom. However, the phosphorescent quantum efficiency (Φ) of PDICz is lower than that of 9,9 -(2,5-dibromo-1,4-phenylene)bis(9H-carbazole) (PDBCz), implying that a comprehensive consideration is necessary. Furthermore, by analyzing the vibrational mode, we have confirmed that the reorganization energies are also influenced by the different halogen atoms. While the dominated factor that determines the kr and knr comes from the spin-orbital coupling. We expect that our research findings will be beneficial to the newly designed organic phosphorescent materials in the future.

Volume 255
Pages \n 119642\n
DOI 10.1016/j.saa.2021.119642
Language English
Journal Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy

Full Text