The Science of the total environment | 2021

Combined effects of arsenic and Magnaporthe oryzae on rice and alleviation by silicon.

 
 
 
 
 
 

Abstract


While the impacts of arsenic (As) and Magnaporthe oryzae on rice have been well-studied, a dearth of knowledge exists on how rice responds to their combined stress. Moreover, increasing exogenous silicon (Si) can alleviate M. oryzae infection and As uptake, but how increasing exogenous Si affects the combined stress of M. oryzae and As is unknown. We grew three cultivars of rice that varied in their susceptibility to As and M. oryzae under low (50\xa0μM, SiL) and high (1500\xa0μM, SiH) Si with and without As (4\xa0μM, 80/20 As (III)/As(V)) and with or without M. oryzae infection and examined the impacts of treatments on plant As and Si concentrations, severity of disease by M. oryzae, and stress via targeted gene expression. SiH treatments generally decreased shoot As concentrations by 20-70% compared to SiL treatments depending on cultivar and M. oryzae exposure. There was no effect of Si or As treatments on percent of leaf diseased in the As-tolerant cultivar M206, but in the As-sensitive cultivar IR66, SiH treatment decreased percent of leaf diseased in the absence of As and had no impact when As was present. In the M. oryzae-susceptible Sariceltik, plants receiving SiH had significantly fewer lesions than those receiving SiL and plants with the fewest lesions were in the SiH\xa0+\xa0As treatments. Plants that were exposed to As\xa0+\xa0M. oryzae were the most stressed when grown under SiL, but this stress response was lowered by SiH treatments. A separate pathogenicity assay with Sariceltik showed that in contrast to our hypothesis, As exposure decreased lesion growth, particularly under SiH treatments, and lessened the impact of M. oryzae on rice. These results suggest that rice grown under replete Si will be able to withstand combined stressors of M. oryzae and As, but will be highly stressed under Si deficient scenarios.

Volume 750
Pages \n 142209\n
DOI 10.1016/j.scitotenv.2020.142209
Language English
Journal The Science of the total environment

Full Text