The Science of the total environment | 2021

High serum IgG subclass concentrations in children with e-waste Pb and Cd exposure.

 
 
 
 
 
 

Abstract


Immunoglobulin G (IgG) is the predominant component of the humoral immune system. Epidemiological studies have shown that lead (Pb) or cadmium (Cd) exposure is associated with changes in human IgG levels, and alteration of IgG subclass production can be induced by differential modulation of Th1 and Th2 cytokines caused by Pb or Cd exposure. However, no study has focused on the adverse effects of Pb and Cd co-exposure on IgG subclass production by regulating Th1/Th2 cytokines in children living in electronic waste (e-waste) areas. This study aims to analyze the associations among Pb and Cd in blood, Th1/Th2 cytokines, and IgG subclasses in serum from children. A total of 181 healthy, 2- to 7-year-old children were examined. Of them, 104 were from Guiyu (e-waste exposed group), and the rest were from Haojiang (reference group) in China. Pb and Cd levels in whole blood, cytokines, and IgG subclasses in serum were determined. Exposed children had higher levels of blood Pb and Cd, serum IgG1, IgG1\xa0+\xa0IgG2, serum Th1 cytokine interferon-γ (IFN-γ) and lower levels of the Th2 cytokine interleukin (IL)-13. Increased blood Pb levels were positively associated with serum levels of IFN-γ, and negatively associated with serum levels of IL-13. Adjusted linear regression analysis showed that serum levels of IL-13 were negatively associated with serum levels of IgG1 and IgG1\xa0+\xa0IgG2. Mediation models indicated that IL-13 had significant mediating effects on the relationships between blood Pb levels and serum IgG1, as well as between blood Pb levels and serum IgG1\xa0+\xa0IgG2. Increased blood Cd levels were positively associated with serum levels of IgG1. Our results show heavy metal (particularly Pb) exposure may affect IgG subclass production by regulating Th1/Th2 cytokines in exposed children, thus providing new evidence for a relationship between humoral immune function and environmental exposure.

Volume 764
Pages \n 142806\n
DOI 10.1016/j.scitotenv.2020.142806
Language English
Journal The Science of the total environment

Full Text