The Science of the total environment | 2021

Structure-dependent antimicrobial mechanism of quaternary ammonium resins and a novel synthesis of highly efficient antimicrobial resin.

 
 
 
 
 
 
 

Abstract


The demand for powerful and multifunctional water-treatment materials and reagents is increasing, because we are facing worse raw water quality, various tolerant bacteria, and risky disinfection by-products (DBPs) in drinking water. Quaternary ammonium resins (QARs) are promising candidates for water disinfection and purification, but their limited bactericidal capacities are difficult to improve because of the lack of guidelines for enhancing antibacterial efficiency. Therefore, we first systematically studied the structure-dependent antimicrobial mechanism of QARs and found that the best resin skeleton is acrylic-type, the optimal bactericidal alkyl is hexyl or octyl, the most applicable sizes are 80-100 meshes, the best counter anion is iodide ion, and the optimum quaternization reagent is iodoalkane. Moreover, the antibacterial capacity was demonstrated to depend on surficial N+ groups, correlating with surficial N+ charge density (R2 of 0.98) but not with exchange capacity (R2 of 0.26), physical adsorption of resin skeleton, or electrostatic adsorption of N+ groups. Based on these principles, we synthesized a new resin, Ac-81, with a surficial antibacterial design, which simultaneously exhibited better antimicrobial efficiency (two orders of magnitude) as well as higher contaminant removal potential (61.92%) compared to the traditional Ac-8C antibacterial resin. Furthermore, the new resin showed remarkable broad-spectrum antibacterial effects against Gram-negative E. coli and P. aeruginosa and Gram-positive B. subtilis and S. aureus in simulated water and actual water. Simultaneously, water quality was significantly improved, with HCO3-, SO42-, TN, TP, and TOC reduced by 79-90%, >99%, 66-85%, >99%, and 22-26%, respectively. Ac-81 is characterized by facile reusability, high treatment capacity of 1500 bed volume, and good adaptability for treating actual water, providing a promising alternative for drinking-water disinfection and purification.

Volume 768
Pages \n 144450\n
DOI 10.1016/j.scitotenv.2020.144450
Language English
Journal The Science of the total environment

Full Text