The Science of the total environment | 2021

Arsenic and mercury contamination and complex aquatic bioindicator responses to historical gold mining and modern watershed stressors in urban Nova Scotia, Canada.

 
 
 
 
 

Abstract


Beginning in the late-1800s, gold mining activities throughout Nova Scotia, eastern Canada, released contaminants, notably geogenic arsenic from milled ore and anthropogenic mercury from amalgamation, to local environments via surface water flows through tailings fields. We investigated recovery from and legacy effects of the tailings field at the Montague Gold District (~1863-1940) on nearby urban lake ecosystems using geochemical measures and zooplankton remains archived in dated sediment cores from an impact (Lake Charles) and a reference (Loon Lake) lake. Sedimentary levels of total arsenic and total mercury were used to assess mining-related inputs. Arsenic concentrations remain elevated at nearly 300 times above sediment guidelines in Lake Charles surface sediments, due to its upward mobilization from enriched sediment intervals and sequestration by iron oxyhydroxides in surficial sediments. Peak mercury concentrations at Lake Charles were eight times above sediment guidelines during the mining period, and since ~1990 have recovered to levels observed before mining began. Legacy mining impacts at Lake Charles and non-mining related environmental changes in the post-1950 sediments at both lakes have thus combined to structure assemblage compositions of primary consumers. At both lakes, assemblages of pelagic-dominated Cladocera differed (p ≤ 0.05) during the mining period compared to periods before and after mining. Taxon richness differed (p ≤ 0.01) only between the pre- and post-mining periods at mining-impacted Lake Charles and reflects long-term declines of substrate-dwelling littoral taxa. Geochemical and biological recovery have not completely occurred at Lake Charles despite the mine district s closure ~80 years ago. Our findings demonstrate that impacts of ore processing and amalgamation from historical gold mining, combined with recent watershed stressors, continue to affect sedimentary arsenic geochemistry and intermediate trophic levels of nearby, downstream aquatic habitats.

Volume None
Pages \n 147374\n
DOI 10.1016/j.scitotenv.2021.147374
Language English
Journal The Science of the total environment

Full Text