The Science of the total environment | 2021

Insight into the synergetic effect of photocatalysis and transition metal on sulfite activation: Different mechanisms for carbamazepine and diclofenac degradation.

 
 
 
 
 
 
 
 

Abstract


Sulfite [S(IV)] is a promising alternative for sulfate radical-based advanced oxidation processes (SR-AOPs). Transition metal and photocatalysis are generally considered to have a synergetic effect for S(IV) activation. However, the study shows that the synergetic effect is target specific. Herein, an ultra-small Fe2O3 clusters deposited graphitic carbon nitride is synthesized and used for S(IV) activation. For carbamazepine (CBZ) degradation, photogenerated holes can transform S(IV) into sulfate radical and photogenerated electrons can accelerate Fe(II)/Fe(III) cycle, which account for the synergetic effect. In contrast, the degradation of diclofenac (DCF) depends on the excitation of DCF rather than photocatalyst. Instead of radical precursor, S(IV) acts as the electron transfer bridge between excited DCF and photocatalyst. Thus, the deposition of Fe2O3 negatively affects DCF degradation. Density Functional Theory calculation shows that the first excited state rather than the ground state of diclofenac is more suitable for reactive site prediction, which confirms the photosensitization-like degradation mechanism. Moreover, the effects of pH and coexisted anions varies for CBZ and DCF. The study shed light on the synergetic effect of transition metal and photocatalysis for S(IV) activation, and also open an avenue for the study of target specific mechanisms for AOPs.

Volume 787
Pages \n 147626\n
DOI 10.1016/j.scitotenv.2021.147626
Language English
Journal The Science of the total environment

Full Text