Solid State Ionics | 2021

Investigation of structure and cycling performance of Nb5+ doped high‑nickel ternary cathode materials

 
 
 
 
 
 
 
 
 
 

Abstract


Abstract Nickel-rich layered LiNi0.8Co0.1Mn0.1O2 is a promising cathode material due to its high specific capacity. However, commercial application of this material is impeded by its rapid capacity degradation associated with structural instability. In this work, 0.5–2\xa0mol% Nb5+ doped LiNi0.8Co0.1Mn0.1O2 cathode material is prepared by heat treatment of a mixture of stoichiometric amounts of nano-sized Nb2O5 powders, co-precipitated NixMn1-x(OH)2 precursors, and LiOH·H2O. The results show that Nb5+ doping significantly improves the cycling properties of LiNi0.8Co0.1Mn0.1O2 cathode material and that the optimal Nb5+ content in the structure is 1\xa0mol%. Under a voltage range of 2.75–4.3\xa0V, 1\xa0mol% Nb5+ doped LiNi0.8Co0.1Mn0.1O2 cathode material shows an initial discharge capacity of 180.2 mAh/g at 0.1C, with a capacity retention of 96.9% for subsequent 300\xa0cycles at 1C at room temperature. In contrast, bare LiNi0.8Co0.1Mn0.1O2 shows a capacity retention of only ~79.8% under the same conditions, with an initial specific discharge capacity of 184.9 mAh/g. The improvement in cycling performance is attributed to stabilization of the layered structure by Nb5+, mitigated migration of Ni2+ to the Li layer, improved lithium diffusion kinetics and reduced lattice expansion/shrinkage during cycling. Stabilization of the layered structure by Nb5+ doping is further reflected by the observation of fewer cracks in cathode electrodes after prolonged cycling.

Volume 359
Pages 115520
DOI 10.1016/j.ssi.2020.115520
Language English
Journal Solid State Ionics

Full Text