Talanta | 2021

Facile fabrication of silica@covalent organic polymers core-shell composites as the mixed-mode stationary phase for hydrophilic interaction/reversed-phase/ion-exchange chromatography.

 
 
 
 
 
 
 
 

Abstract


Covalent organic polymers (COPs) are a promising class of cross-linked polymeric networks that attracted extensive attention in separation and analysis fields. Exploring facile and convenient strategy to prepare COPs-based mixed-mode stationary phases for high performance liquid chromatography (HPLC) has seriously lagged and has never been reported. Herein, we describe a facile in-situ grow strategy for fabrication of silica@COPs core-shell composites (SiO2@TpBD-(OH)2) as a novel mixed-mode stationary phase for HPLC. Owing to the co-existing of abundant hydroxyl, carbonyl, imine, cyclohexyl groups, and benzene rings in the skeleton of COPs shell, the developed mixed-mode stationary phase exhibits hydrophilic interaction liquid chromatography (HILIC)/reversed-phase liquid chromatography (RPLC)/ion-exchange chromatography (IEX) retention mechanisms. The content of acetonitrile, pH value, and salt concentration in the mobile phase were investigated on SiO2@TpBD-(OH)2 packed column. In comparison to conventional single-mode columns, the SiO2@TpBD-(OH)2 column showed flexible selectivity, enhanced separation performance, and superior resolution for benzene homologues, polycyclic aromatic hydrocarbons, nucleosides and bases, and acidic organic compounds. The column efficiency of p-nitrobenzoic acid was up to 54440 plates per meter. The packed column also possessed outstanding chromatographic repeatability for six nucleosides and bases with the RSDs of 0.07-0.23%, 0.58-1.77%, and 0.31-1.23% for retention time, peak area, and peak height, respectively. Besides, the SiO2@TpBD-(OH)2 column offered baseline separation of multiple organic pollutants in lake water, which verified its great potential in real sample analysis. Overall, the silica@COPs core-shell composites not only provide a new candidate of mixed-mode stationary phases, but also extend the potential application of COPs in separation science.

Volume 233
Pages \n 122524\n
DOI 10.1016/j.talanta.2021.122524
Language English
Journal Talanta

Full Text