Toxicon : official journal of the International Society on Toxinology | 2021

Cytotoxicity potential of chemical constituents isolated and derivatised from Rhinella marina venom.

 
 
 
 
 
 
 
 

Abstract


Chemical compounds from skin secretions from toads of Bufonidae family have been long-studied. In the search for new molecules with pharmacological action, the 3β-OH groups of bufadienolides are commonly derivatised using acetyl groups. This work described the isolation and/or structural elucidation of isolated and derivatised compounds from the venom of the Brazilian anuran Rhinella marina, and their evaluation in in vitro assays. In the methanolic extract of the R. marina venom, compound cholesterol (1) was isolated from the CRV-52 fraction by classic column chromatography, dehydrobufotenine (2) by sephadex LH-20 from the CRV-28 fraction, and a mix of suberoyl arginine (3) and compound 2 was obtained from the CRV-6-33 fraction. The compounds marinobufagin (4), telocionbufagin (5) and bufalin (6) were isolated by classic column chromatography, followed by separation via HPLC in the CRV-70 fraction, and the compound marinobufotoxin (9) was isolated by classic column chromatography in the CRV-6 fraction, here being isolated for the first time in R. marina specimens. Compounds 4 and 5 were submitted for acetylation with acetic anhydride, in the presence of pyridine and 4-dimethyilaminopiridine (DMAP), in order to obtain the compounds 3-acetyl-marinobufagin (7) and 3-acetyl-telocinobufogin (8). The isolated and derivatised compounds were identified by 1H and 13C NMR, and their molecular mass confirmed by mass spectrometry. All compounds (except 1 and 3) were tested in cytotoxic assays by the MTT method and presented cytotoxic potential against human cancer cell lines, as well as against non-tumoral human embryonic kidney HEK-293 cells. With the exception of compound 2, all molecules presented IC50 values < 4 μM, and none caused hemolysis of human erythrocytes, demonstrating a promising cytotoxic potential of natural and chemically-modified bufadienolides. The results of this presents a detailed contribution of bioactive chemicals from Brazilian Amazon Rhinella species, and indicates promising areas for further studies and pharmaceutical investments.

Volume None
Pages None
DOI 10.1016/j.toxicon.2021.02.006
Language English
Journal Toxicon : official journal of the International Society on Toxinology

Full Text