Veterinary immunology and immunopathology | 2021

In silico characterization and expression analysis of eight C-type lectins in obscure puffer Takifugu obscurus.

 
 
 
 
 
 
 

Abstract


C-type lectins (CTLs) are a group of carbohydrate-binding proteins that play crucial roles in innate immune defense against invading pathogens. CTLs have been extensively studied in lower vertebrates, such as fish, for their roles in eliminating pathogens; however, their homologs in pufferfish are not well known. In the present study, eight CTLs from obscure puffer Takifugu obscurus (designated as ToCTL3-10 according to the order they were discovered) were obtained. All predicted ToCTL proteins contained a single carbohydrate recognition domain (CRD). ToCTL7 also contained one calcium-binding epidermal growth factor (EGF)-like domain (EGF_CA) and a transmembrane region. ToCTL9 also contained an SCP domain, an EGF domain, and an EGF-like domain. Bioinformatics analysis revealed that ToCTL3-10 mainly clustered with the corresponding CTL homologs of other pufferfish species. Tissue distribution analysis detected ToCTL3-10 in all tissues examined, including kidneys, liver, gills, spleen, intestines, and heart. Moreover, the expressions of ToCTL3-10 were significantly induced in the kidneys of obscure puffer following challenges with three Gram-negative bacterial pathogens, namely, Vibrio harveyi, Aeromonas hydrophila, and Edwardsiella tarda, and a synthetic analog of double-stranded RNA poly(I:C). The expression patterns of ToCTL3-10 in response to different immune stimulants were different. Our results indicated that the eight ToCTLs obtained herein might be involved in host defense against bacterial and poly(I:C) infections in T. obscurus.

Volume 234
Pages \n 110200\n
DOI 10.1016/j.vetimm.2021.110200
Language English
Journal Veterinary immunology and immunopathology

Full Text