Virus research | 2021

Steady-state persistence of respiratory syncytial virus in a macrophage-like cell line and sequence analysis of the persistent viral genome.

 
 
 
 
 
 
 
 
 
 

Abstract


Long-term infection by human respiratory syncytial virus (hRSV) has been reported in immunocompromised patients. Cell lines are valuable in vitro model systems to study mechanisms associated with viral persistence. Persistent infections in cell cultures have been categorized at least as in carrier-state , where there exist a low proportion of cells infected by a lytic virus, and as in steady-state , where most of cells are infected, but in absence of cytophatic effect. Here, we showed that hRSV maintained a steady-state persistence in a macrophage-like cell line after 120 passages, since the viral genome was detected in all of the cells analyzed by fluorescence in situ hybridization, whereas only defective viruses were identified by sucrose gradients and titration assay. Interestingly, eight percent of cells harboring the hRSV genome revealed undetectable expression of the viral nucleoprotein N; however, when this cell population was sorted by flow cytometry and independently cultured, viral protein expression was induced at detectable levels since the first post-sorting passage, supporting that sorted cells harbored the viral genome. Sequencing of the persistent hRSV genome obtained from virus collected from cell-culture supernatants, allowed assembling of a complete genome that displayed 24 synonymous and 38 nonsynonymous substitutions in coding regions, whereas extragenic and intergenic regions displayed 12 substitutions, two insertions and one deletion. Previous reports characterizing mutations in extragenic regulatory sequences of hRSV, suggested that some mutations localized at the 3 leader region of our persistent virus might alter viral transcription and replication, as well as assembly of viral nucleocapsids. Besides, substitutions in P, F and G proteins might contribute to altered viral assembly, budding and membrane fusion, reducing the cytopathic effect and in consequence, contributing to host-cell survival. Full-length mutant genomes might be part of the repertoire of defective viral genomes formed during hRSV infections, contributing to the establishment and maintenance of virus persistence.

Volume None
Pages \n 198367\n
DOI 10.1016/j.virusres.2021.198367
Language English
Journal Virus research

Full Text