Waste management | 2021

Unveiling non-linear water effects in near infrared spectroscopy: A study on organic wastes during drying using chemometrics.

 
 
 
 
 
 

Abstract


In the context of organic waste management, near infrared spectroscopy (NIRS) is being used to offer a fast, non-destructive, and cost-effective characterization system. However, cumbersome freeze-drying steps of the samples are required to avoid water s interference on near infrared spectra. In order to better understand these effects, spectral variations induced by dry matter content variations were obtained for a wide variety of organic substrates. This was made possible by the development of a customized near infrared acquisition system with dynamic highly-resolved simultaneous scanning of near infrared spectra and estimation of dry matter content during a drying process at ambient temperature. Using principal components analysis, the complex water effects on near infrared spectra are detailed. Water effects are shown to be a combination of both physical and chemical effects, and depend on both the characteristics of the samples (biochemical type and physical structure) and the moisture content level. This results in a non-linear relationship between the measured signal and the analytical characteristic of interest. A typology of substrates with respect to these water effects is provided and could further be efficiently used as a basis for the development of local quantitative calibration models and correction methods accounting for these water effects.

Volume 122
Pages \n 36-48\n
DOI 10.1016/j.wasman.2020.12.019
Language English
Journal Waste management

Full Text