Water research | 2019

Tide driven microbial dynamics through virus-host interactions in the estuarine ecosystem.

 
 
 
 
 
 
 
 

Abstract


Microbes drive ecosystems and their viruses manipulate these processes, yet the importance of tidal functioning on the estuarine viruses and microbes remains poorly elucidated. Here, an integrative investigation on tidal patterns in viral and microbial communities and their inherent interactions over an entire spring-neap tidal cycle was conducted along a macrotidal subtropical estuary. The viral and microbial abundances oscillated significantly over the tidal cycle with relatively higher abundances observed at spring tide compared to neap tide. The distinct tidal dynamic patterns in bacterial production and community composition were tightly associated with the variations in viral infection, production and decay, revealing the tide-driven interactions between viruses and microbes. Concurrent with the higher viral decay but lower bacterial abundance and inhibited bacterial metabolism during the neap tide, lower gross viral production was coupled with a synchronous switching from viral lytic to lysogenic infection induced by the loss of viral infection efficiency and the transition from marine to freshwater bacterial populations triggered by tidal mixing. Our results highlighted the major tidal impact on the microbial dynamics through virus-host interactions, with cascading effects, neglected so far, on estuarine biogeochemical cycles.

Volume 160
Pages \n 118-129\n
DOI 10.1016/j.watres.2019.05.051
Language English
Journal Water research

Full Text