Cell Reports Physical Science | 2021

Stabilizing the Na/Na3Zr2Si2PO12 interface through intrinsic feature regulation of Na3Zr2Si2PO12

 
 
 
 

Abstract


Summary NASICON-structured Na3Zr2Si2PO12 ceramics are deemed as promising electrolytes for all-solid-state sodium metal batteries (ASSSB). However, their practical applications are extremely hindered by\xa0poor interfacial performance, especially at room temperature. Here, we report that the intrinsic features of the Na3Zr2Si2PO12-based electrolyte, i.e., microstructure and composition, prominently impact its interfacial electrochemical behavior. Sc3+-substituted Na3Zr2Si2PO12 ceramic with a refined microstructure shows significantly enhanced ionic conductivity and reduced activation energy. Consequently, a robust contact and stable interface with low interfacial resistance (63\xa0Ω cm2 at 25°C) are realized between Na electrode and the electrolyte ceramic. Both sodium symmetric and all-solid-state cells based on this ceramic electrolyte present notable cycling stability and rate performance at room temperature, further confirming the importance of the active microstructure control of electrolyte in improving the Na+ transport capability and accelerating the formation of kinetically stable interphase at the Na/ceramic electrolyte interface.

Volume None
Pages None
DOI 10.1016/j.xcrp.2021.100478
Language English
Journal Cell Reports Physical Science

Full Text