Epilepsy & Behavior | 2021

Fructose 1,6-bisphosphate is anticonvulsant and improves oxidative glucose metabolism within the hippocampus and liver in the chronic pilocarpine mouse epilepsy model

 
 
 

Abstract


Glucose metabolism is altered in epilepsy, and this may contribute to seizure generation. Recent research has shown that metabolic therapies including the ketogenic diet and medium chain triglycerides can improve energy metabolism in the brain. Fructose 1,6-bisphosphate (F16BP) is an intermediate of glycolysis and when administered exogenously is anticonvulsant in several rodent seizure models and may alter glucose metabolism. Here, we showed that F16BP elevated the seizure threshold in the acute 6-Hz mouse seizure model and investigated if F16BP could restore impairments in glucose metabolism occurring in the chronic stage of the pilocarpine mouse model of epilepsy. Two weeks after the pilocarpine injections, mice that experienced status epilepticus (SE, epileptic ) and did not experience SE (no SE, nonepileptic ) were injected with vehicle (0.9% saline) or F16BP (1\u202fg/kg in 0.9% saline) daily for 5 consecutive days. At 3\u202fweeks, mice were injected with [U-13C6]-glucose and the % enrichment of 13C in key metabolites in addition to the total levels of each metabolite was measured in the hippocampal formation and liver. Fructose 1,6-bisphosphate increased total GABA in the hippocampal formation, regardless of whether mice had experienced SE. In the hippocampal formation, F16BP prevented reductions in the % 13C enrichment of citrate, succinate, malate, glutamate, GABA and aspartate that occurred in the chronic stage of the pilocarpine model. Interestingly, % 13C enrichment in glucose-derived metabolites was reduced in the liver in the chronic stage of the pilocarpine model. Fructose 1,6-bisphosphate was also beneficial in the liver, preventing reductions in % 13C enrichment of lactate and alanine that were associated with SE. This study confirmed that F16BP is anticonvulsant and can improve elements of glucose metabolism that are dysregulated in the chronic stage of the pilocarpine model, which may be due to reduction of spontaneous seizures. Our results highlight that F16BP may be therapeutically beneficial for epilepsies refractory to treatment.

Volume 122
Pages None
DOI 10.1016/j.yebeh.2021.108223
Language English
Journal Epilepsy & Behavior

Full Text