General and comparative endocrinology | 2021

A potential negative regulation of myostatin in muscle growth during the intermolt stage in exopalaemon carinicauda.

 
 
 
 

Abstract


Muscle growth in crustacean is a complicated process where the muscle grows and develops through muscle restoration, and the growth rate depends on the net muscle gain during molting. Myostatin (MSTN) is a conserved inhibitor of muscle growth in vertebrates, but until now solid evidence supporting a similar function of MSTN in invertebrates has been lacking. In this study, we identified and characterized MSTN from the shrimp Exopalaemon carinicauda (EcMSTN) to better understand its biological function. The full-length cDNA of EcMSTN was 1,518 bp, encoding 428 amino acid residues, and the genomic sequence was 1,851 bp, including three exons and two introns. EcMSTN was expressed in a wide range of tissues, but predominantly detected in the abdominal muscle (P < 0.05). Low expression was detected in the cleavage, blastula and gastrula stages in the early development stages, increasing after the nauplius stage. EcMSTN expression was negatively correlated with the growth traits. After EcMSTN knockdown using RNA interference, EcMSTN expression was down-regulated in the abdominal muscle and up-regulated the expression of growth-related genes, including fast myosin heavy chain and skeletal muscle actin 3. After inhibiting EcMSTN for 5 weeks, the RNAi-treated shrimp with reduced EcMSTN levels exhibited a dramatically higher body weight compared with that of the control group. Association analysis revealed that two SNP loci g.Mstn220 and g.Mstn567 were markedly associated with both body weight and body length. The results would clarify the negative role of EcMSTN in regulating muscle growth during the intermolt stage and provide growth-related markers for molecular marker assisted breeding of E. carinicauda.

Volume None
Pages \n 113902\n
DOI 10.1016/j.ygcen.2021.113902
Language English
Journal General and comparative endocrinology

Full Text