Genomics | 2021

Construction of a lncRNA/pseudogene-hsa-miR-30d-5p-GJA1 regulatory network related to metastasis of pancreatic cancer.

 
 
 
 
 

Abstract


Pancreatic cancer, the most lethal malignant tumor, is notorious for its poor prognosis and metastatic potential. Non-coding RNAs (ncRNAs) are reported to play key roles in cancer metastasis. In this study, miRNA and gene expression profiles between metastatic pancreatic cancer cell M8 and its parental cell Bxpc.3 were determined. Using differential expression analysis, survival analysis, target gene prediction, pathway enrichment analysis, intersection analysis and correlation analysis, hsa-miR-30d-5p/GJA1 axis was identified as the most potential pathway involved in metastasis of pancreatic cancer. Subsequently, two upstream lncRNAs (HELLPAR and OIP-AS1) and four upstream pseudogenes (AC093616.1, AC009951.1, TMEM183B and PABPC1P4) of hsa-miR-30d-5p/GJA1 axis were predicted and were then identified via assessment of RNA-RNA expression relationship. Furthermore, CTNNA1, CTNNB1 and CTNND1 were regarded as three crucial molecules to be participated in hsa-miR-30d-5p/GJA1-mediated metastatic potential in pancreatic cancer. In conclusion, we established a novel lncRNA/pseudogene-hsa-miR-30d-5p-GJA1 regulatory network linked to metastasis of pancreatic cancer.

Volume None
Pages None
DOI 10.1016/j.ygeno.2021.04.013
Language English
Journal Genomics

Full Text