Oryx | 2019

Improving the random encounter model method to estimate carnivore densities using data generated by conventional camera-trap design

 
 
 
 
 
 
 

Abstract


Abstract The random encounter model, a method for estimating animal density using camera traps without the need for individual recognition, has been developed over the past decade. A key assumption of this model is that cameras are placed randomly in relation to animal movements, requiring that cameras are not set only at sites thought to have high animal traffic. The aim of this study was to define a correction factor that allows the random encounter model to be applied in photo-trapping surveys in which cameras are placed along tracks to maximize capture probability. Our hypothesis was that applying such a correction factor would compensate for the different rates at which lynxes use tracks and the surrounding area, and should thus improve the estimates obtained with the random encounter model. We tested this using data from a well-known Iberian lynx Lynx pardinus population. Firstly, we estimated Iberian lynx densities using a traditional camera-trapping design followed by spatially explicit capture–recapture analyses. We estimated the differential use rate for tracks vs the surrounding area using data from a lynx equipped with a GPS collar, and subsequently calculated the correction factor. As expected, the random encounter model overestimated densities by 378%. However, the application of the correction factor improved the estimate and reduced the error to 16%. Although there are limitations to the application of the correction factor, the corrected random encounter model shows potential for density estimation of species for which individual identification is not possible.

Volume 55
Pages 99 - 104
DOI 10.1017/S0030605318001618
Language English
Journal Oryx

Full Text