ACS chemical biology | 2019

Identification of C-β-d-Glucopyranosyl Azole-Type Inhibitors of Glycogen Phosphorylase That Reduce Glycogenolysis in Hepatocytes: In Silico Design, Synthesis, in Vitro Kinetics, and ex Vivo Studies.

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Abstract


Several C-β-d-glucopyranosyl azoles have recently been uncovered as among the most potent glycogen phosphorylase (GP) catalytic site inhibitors discovered to date. Toward further exploring their translational potential, ex vivo experiments have been performed for their effectiveness in reduction of glycogenolysis in hepatocytes. New compounds for these experiments were predicted in silico where, for the first time, effective ranking of GP catalytic site inhibitor potencies using the molecular mechanics-generalized Born surface area (MM-GBSA) method has been demonstrated. For a congeneric training set of 27 ligands, excellent statistics in terms of Pearson ( RP) and Spearman ( RS) correlations (both 0.98), predictive index (PI = 0.99), and area under the receiver operating characteristic curve (AU-ROC = 0.99) for predicted versus experimental binding affinities were obtained, with ligand tautomeric/ionization states additionally considered using density functional theory (DFT). Seven 2-aryl-4(5)-(β-d-glucopyranosyl)-imidazoles and 2-aryl-4-(β-d-glucopyranosyl)-thiazoles were subsequently synthesized, and kinetics experiments against rabbit muscle GPb revealed new potent inhibitors with best K i values in the low micromolar range (5c = 1.97 μM; 13b = 4.58 μM). Ten C-β-d-glucopyranosyl azoles were then tested ex vivo in mouse primary hepatocytes. Four of these (5a-c and 9d) demonstrated significant reduction of glucagon stimulated glycogenolysis (IC50 = 30-60 μM). Structural and predicted physicochemical properties associated with their effectiveness were analyzed with permeability related parameters identified as crucial factors. The most effective ligand series 5 contained an imidazole ring, and the calculated p Ka (Epik: 6.2; Jaguar 5.5) for protonated imidazole suggests that cellular permeation through the neutral state is favored, while within the cell, there is predicted more favorable binding to GP in the protonated form.

Volume None
Pages None
DOI 10.1021/ACSCHEMBIO.9B00172
Language English
Journal ACS chemical biology

Full Text