ACS nano | 2019

Designing Higher Resolution Self-Assembled 3D DNA Crystals via Strand Terminus Modifications.

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Abstract


DNA tensegrity triangles self-assemble into rhombohedral three-dimensional crystals via sticky ended cohesion. Crystals containing two-nucleotide (nt) sticky ends (GA:TC) have been reported previously, and those crystals diffracted to 4.9 Å at beamline NSLS-I-X25. Here, we analyze the effect of varying sticky end lengths and sequences as well as the impact of 5 - and 3 -phosphates on crystal formation and resolution. Tensegrity triangle motifs having 1-, 2-, 3-, and 4-nt sticky ends all form crystals. X-ray diffraction data from the same beamline reveal that the crystal resolution for a 1-nt sticky end (G:C) and a 3-nt sticky end (GAT:ATC) were 3.4 and 4.2 Å, respectively. Resolutions were determined from complete data sets in each case. We also conducted trials that examined every possible combination of 1-nucleotide and 2-nucleotide sticky-ended phosphorylated strands and successfully crystallized all 16 possible combinations of strands. We observed the position of the 5 -phosphate on either the crossover (1), helical (2), or central strand (3) affected the resolution of the self-assembled crystals for the 2-turn monomer (3.0 Å for 1-2P-3P) and 2-turn dimer sticky ended (4.1 Å for 1-2-3P) systems. We have also examined the impact of the identity of the base flanking the sticky ends as well as the use of 3 -phosphate. We conclude that crystal resolution is not a simple consequence of the thermodynamics of the direct nucleotide pairing interactions involved in molecular cohesion in this system.

Volume None
Pages None
DOI 10.1021/ACSNANO.9B02430
Language English
Journal ACS nano

Full Text