ACS Photonics | 2021

Enhanced Nonlinear Emission from Single Multilayered Metal–Dielectric Nanocavities Resonating in the Near-Infrared

 
 
 
 
 
 
 
 

Abstract


Harmonic generation mechanisms are of great interest in nanoscience and nanotechnology, since they allow generating visible light by using near-infrared radiation, which is particularly suitable for its endless applications in bio-nanophotonics and opto-electronics. In this context, multilayer metal-dielectric nanocavities are widely used for light confinement and waveguiding at the nanoscale. They exhibit intense and localized resonances that can be conveniently tuned in the near-infrared and are therefore ideal for enhancing nonlinear effects in this spectral range. In this work, we experimentally investigate the nonlinear optical response of multilayer metal-dielectric nanocavities. By engineering their absorption efficiency and exploiting their intrinsic interface-induced symmetry breaking, we achieve one order of magnitude higher second-harmonic generation efficiency compared to gold nanostructures featuring the same geometry and resonant behavior. In particular, while the third order nonlinear susceptibility is comparable with that of bulk Au, we estimate a second order nonlinear susceptibility of the order of 1 pm/V, which is comparable with that of typical nonlinear crystals. We envision that our system, which combines the advantages of both plasmonic and dielectric materials, might enable the realization of composite and multi-functional nano-systems for an efficient manipulation of nonlinear optical processes at the nanoscale.

Volume None
Pages None
DOI 10.1021/ACSPHOTONICS.0C01500
Language English
Journal ACS Photonics

Full Text